
Learn to Explore: on Bootstrapping Interactive Data
Exploration with Meta-learning

Yukun Cao, Xike Xie, and Kexin Huang
University of Science and Technology of China

{ykcho, huang 1773}@mail.ustc.edu.cn, xkxie@ustc.edu.cn

Abstract—Interactive data exploration (IDE) is an effective
way of comprehending big data, whose volume and complexity
are beyond human abilities. The main goal of IDE is to discover
user interest regions from a database through multi-rounds of
user labelling. Existing IDEs adopt active-learning framework,
where users iteratively discriminate or label the interestingness
of selected tuples. The process of data exploration can be viewed
as the process of training of a classifier, which determines
whether a database tuple is interesting to a user. An efficient
exploration thus takes very few iterations of user labelling to
reach the data region of interest. In this work, we consider
the data exploration as the process of few-shot learning, where
the classifier is learned with only a few training examples, or
exploration iterations. To this end, we propose a learning-to-
explore framework, based on meta-learning, which learns how
to learn a classifier with automatically generated meta-tasks, so
that the exploration process can be much shortened. Extensive
experiments on real datasets show that our proposal outperforms
existing explore-by-example solutions in terms of accuracy and
efficiency.

Index Terms—Interactive data exploration, Few-shot learning,
Meta learning

I. INTRODUCTION

Interactive data exploration (IDE in short) [1] is at the
frontline of big data management, which tackles data compre-
hensibility challenges caused by fast data accumulation and
limited human ability. The problem of IDE is challenging,
because: 1) user interest is intangible so that incremental
refinement/exploration of user interests is required [2]; 2) user
interest is indescribable in the sense that it is often too complex
to be specified by a user through traditional query languages
(e.g., SQL) [3].

For example, Alice and Bob explore sky objects in the Sloan
Digital Sky Survey (SDSS) database1. Alice is an amateur
astronomer, and her familiar attributes are relatively limited,
{rowc, colc, ra, dec}. However, her data interest is so uncer-
tain that it is hard for her to express accurately. Alternatively,
she can browse and selectively label some database tuples so
that the recommendation of tuples or queries reflecting her
interests can be enabled by IDEs. Bob is an astronomical
scientist whose data interest covers a wide range of attributes,
{rowc, colc, ra, dec, sky u, sky g, ...}2. However, his re-
quirements (e.g., mathematical expressions involving multiple
attributes) are too complex to be expressed by conventional

1https://www.sdss.org/
2These attributes are the photometric attributes of sky objects. Details are

in: https://skyserver.sdss.org/

database queries, and even database experts take much time to
write dedicated filters. But it is easy for Bob to label whether
a specific data tuple meets his needs.

Following explore-by-example paradigm [2], [4], [5], the
main goal of IDE is to discover user interest regions (UIR in
short) from a to-be-explored database through multiple rounds
of user labelling. The exploration process can be viewed as the
training process of classifiers [3], deciding if a database tuple
is “interesting” to a user. The output of IDE refers to arbitrarily
attainable data query regions, covering user interested tuples in
the explored database. Technically, the indescribability brings
in the challenge of generality in UIR representation [3]. The
intangibility brings in the challenge of “slow convergence”.
For example, hundreds of iterations of labelling is needed to
converge to a UIR [2].

TABLE I
EVOLUTION OF IDE UNDER “EXPLORE-BY-EXAMPLE ” PARADIGM

UIR in subspace Classifier Techniques
AIDE [2], [4] Linear Decision Tree Active-Learning

DSM [5] Convex SVM Active-Learning
LTE Arbitrary Neural Networks Meta-Learning

In general, a high-performance IDE is expected to achieve
both high efficiency and accuracy. The efficiency refers to
human efforts expended on the “interestingness” labelling. The
accuracy refers to the closeness between the inferred UIR and
the real one. The pursuit of efficiency and accuracy can also
be observed from IDE technology evolution, in Table I. A
better classifier leads to a faster convergence; and a better
UIR representation leads to a higher accuracy, which in turn
prompts the classifier training, i.e., exploration efficiency.

It is thus a natural evolution of IDE classifiers, emanating
from machine learning, e.g., decision trees [2], [4], support
vector machines (SVM in short) [5], and taking shape in deep
learning, e.g., neural networks (NN in short). The NN has
good capabilities in capturing abstract feature representation
in the manner of stacked layers, with a good match to user
interest exploration which is intangible and indescribable.
Despite the potential accuracy, there are several challenges:
the NN classifier relies on a large number of user labels
for training, which implies more exploration iterations and
human efforts, and thus slower convergence, contradicting the
efficiency target.

To this end, we propose to boost NN classifiers by meta-

User Interest Space Du

User Interest Subspaces

User Interest
Region Ru

θ1
R1R2

D2 D1

θ1*
Offline:Training

θ1 to Φ1

Online: Fast adapt
Φ1 to θ1*

θ1(1)
θ1(2)

θ1(*-1) Φ1

▽Lm1

▽Lm3

▽Lm2

▽L1

Classifier Parameter Space
θ1

Parameters Adapted to the Meta-tasks
Parameters Adapted to the Real Scenes

Possible Parameter Domain of D1

Fig. 1. An Example of LTE

learning3 for IDE systems. The mechanism of meta-learning
is also characterized as few-shot learning by literatures [7],
which shows a good match to the cold start of data ex-
ploration, where labels are rare and precious. We call the
meta-learning supported NN classifier the meta-learner, which
is pre-trained with automatically generated synthetic meta-
tasks. The pre-training equips meta-learners with good ini-
tialization parameters, so that they can be quickly adapted
and generalized during the initial exploration phase. Unlike
conventional training strategies (e.g., active learning [4], [5]),
it takes merely a few gradient optimization steps for classifiers
to converge, corresponding to fewer iterations of user labelling,
and therefore higher efficiency during the online exploration.
From this point, the meta-learning process can be viewed
as “learning to explore” (LTE in short), which takes few-
shot of labelling for a quality initialization of IDE. The LTE
framework has two features, in addition to high accuracy and
efficiency.

First, the pre-training processing of meta-learners in LTE
is unsupervised [8], so that it does not incur the overhead
of user labelling. Meanwhile, it extracts data distributions
and insights from lightweight sampled tuples set, represented
as meta-knowledge, for initializing meta-learners with good
parameters. Figure 1 shows the idea of meta-training. Under
regular training settings, a classifier’s parameter θ1 would
be trained by backpropagation which computes the gradient
decent of a loss function, e.g., ∇L1, and goes through a
long optimization path 〈θ(1)1 , θ

(2)
1 , ..., θ

(∗−1)
1 〉 to converge to an

optimal θ∗1 . It may not be cost efficient, since each gradient
optimization step requires user labelling. With meta-learning,
the classifier parameter θ1 is pre-trained to φ1, which can be
quickly adapted to parameter θ∗1 with much less optimization
steps so as to reduce user labels, during the online exploration.

More, it supports concave or even scattered user interest
regions. The motivation is towards tackling the indescribability
challenge, under which user interests are somehow hard to
be explicitly expressed in SQL templates or filters. Figure 1
shows an example of UIR, which is shaded in a tabular dataset.
Given a multi-dimensional dataset, an IDE system [5] usually

3A typical method such as MAML (Model-Agnostic Meta-Learning [6]
has the objective of learning an appropriate model initialization parameter in
a range of meta-tasks.

decomposes it into multiple low-dimensional datasets. For
example, data space Du is decomposed into subspaces D1

and D2. The projection of UIR on each subspace can be of
arbitrary shapes. For example, R1 is concave on D1, and R2

is a scattered region on D2. Therefore, a powerful classifier
is needed to deal with the generality setting of UIR. Unlike
existing works (in Table I), we do not make assumptions on
UIR shapes.

Our main contributions are summarized as follows.
• We propose, to our best knowledge, the first “learn-to-

explore” framework, that harnesses meta-learning based
neural network classifiers for data exploration.

• The meta-learner of the LTE framework is pre-trained
with automatically generated meta-tasks, so that only a
few gradient optimization steps are needed during the
online exploration, leading to less exploration iterations
and human efforts.

• Experiments on real datasets demonstrate that our pro-
posal outperforms existing explore-by-example solutions
in terms of accuracy and efficiency.

The rest of the paper is organized as follows. Section II
summarizes related works. Section III presents basic concepts
and the LTE framework. Section IV investigates the meta-
learning process. Section V studies the generation of meta-
tasks. Section VI investigates the training process of meta-
learners. Section VII introduces other critical techniques of
the LTE framework, i.e., tabular data preprocessing and few-
shot optimization. Section VIII reports experimental results
and Section IX concludes the paper.

II. RELATED WORK

Interactive Data Exploration. Interactive Data exploration
is about how users can extract knowledge from data using
system assistance and interactive guidance, when they do not
have exact query requirements [1], [3], [9]. Early works focus
on simple user interactions. For example, [10], [11] requires
users to gradually provide interest attribute values to drill down
and finally return interest tuple set. Some works support the
exploration with error guarantees and response deadlines for
specific data types and query templates [12]–[14]. Some works
study preparatory data exploration with the support of online
analytical processing [15]–[19]. In addition, there are works
on the exploration result visualization [20], [21] and query
formulation [22], [23].

Numerous recent researches aim to expand the diversity
of exploration modes, especially by utilizing machine/deep
learning to optimize/model various exploration modules. The
“explore-by-example” systems [4], [5] are designed to discover
user interest regions through tuple-level user labeling and
employ active learning to improve interaction efficiency. “In-
sights” driven systems [24]–[26] formalize interesting patterns
(including correlations, anomalies, trends, etc.) in multidimen-
sional data as “insights” and propose some interactive explo-
ration frameworks for “insights”. Automated exploratory data
analysis (EDA) systems recommend an exploration path for
users, which generally requires predefined exploration modes

and various types of user interactions. Two representatives,
ATENA [27] and Dora [28], utilize deep reinforcement learn-
ing to model the EDA process. ExplainED [29] automatically
generates semantic explanations for each step of the EDA
process to guide the user’s exploration, by natural language
processing (NLP) techniques. Our work is under the explore-
by-example paradigm, which is considered as complementary
systems to EDA systems [27].

In addition, some works are oriented toward specific explo-
ration data types, such as graphs [30]–[32], spatio-temporal
data [33]–[35], and time series [36], [37]. Some works [38],
[39] focus on optimizing the visualization experience during
interactive exploration.

Explore-by-Example. IDEs under this paradigm [2] orig-
inate from the research of “query by example” [40], which
recommends selective tuples in the databases as proxies for
exploration targets. The latest IDE frameworks [4], [5] regard
the exploration process as an incremental classification prob-
lem, and employ active learning to select the tuples that are
most difficult to “discriminate” for users to label. However,
due to the limitation of classifiers and the bottleneck of
active learning, these frameworks focus on specific exploration
targets. For example, the state-of-the-art, DSM [5], assumes
subspatial convexity and conjunctivity of UIRs. Our work
bootstraps the explore-by-example IDE paradigm, aided by
meta-learning, for better exploration efficiency.

Meta-Learning. It is often known as “learning to learn”,
which seeks to gain meta-knowledge from a set of machine
learning tasks in order to improve the learning process [7].
It belongs to the scene of few-shot learning [41]. We focus
on a type of meta-learning method, which learns good initial
parameters for meta-learners with meta-tasks. A typical meta-
task (e.g., MAML [6]) has both training and validation data,
called support set and query set, respectively. During the meta-
training, the meta-learner iterates over the meta-tasks. At each
iteration, a local learner is trained on the support set and
tested by the query set. The meta-learner’s parameters are
then globally updated according to aggregated backpropagated
loss measured by local testing errors. Our work belongs
to a challenging topic of unsupervised learning via meta-
learning [8], since meta-tasks are generated without label sets.

III. OVERVIEW

We introduce basic concepts in Section III-A, show the
framework overview in Section III-B.

A. Basic concepts

User Interest Space. Suppose a database consisting of a set
of attributes A = {a1, ..., a|A|} and a set of |A|-dimensional
tuples. We define the domain space formed by attribute set
A as D = {domain(a1) × domain(a2) × ...domain(a|A|)},
which covers all the database tuples. A user u is inter-
ested in a subset of attributes Au ⊆ A, of which the
domain space can be represented by Du = {domain(au1) ×
...domain(au|Au|)}au

j ∈Au , called user interested space.

Tabular Data
Preprocessing

(Section VII)

Initial
Exploration

Meta-task Generation
(Section V)

Meta-learner Training
(Section VI)

Meta-learning

Optimizer
（Section VII）

Meta-learners

Active
Learning
Iterative

Exploration

Convergence

Final
Retrieval

Offline Training Online Exploration

① user
interest
space
Du

② initial
tuples

③ initial
labels

④ Quick
adaption

Fig. 2. Overview of Learn-to-explore Framework

User Interest Subspace. The exploration target is to browse
Du for retrieving tuples interesting to user u. Existing
IDEs [5], [42] decompose Du into a set of disjoint low-
dimensional subspaces {Di}i≤n, where Du = D1 × ...×Dn.

User Interest Subregion (UIS). Given a user interest sub-
space Di, the UIS Ri ⊆ Di can be defined as the tuples {τ ∈
Di} satisfying a user’s interest. If user u’s exploration interest
on Di is represented by a binary classifier Ii : Di → {0, 1}4,
UIS Ri can be represented by Ri = {τ ∈ Di|Ii(τ) = 1}.

User Interest Region (UIR). Essentially, a user interest
region Ru for user u is the conjunctive combination of its
subregions, Ru = ∨i≤nRi. The target of data exploration is
to efficiently and accurately approximate UIR Ru, determined
by some prediction models, e.g., a classifier, for each of the
n subspaces, acting as {Ii}i≤n.

B. LTE Framework

A bird’s-eye view of LTE framework is shown in Figure 2.
It consists of four functional modules, Meta-learning , Initial
Exploration, Preprocessing, and Optimizer modules, operating
in and two phases, offline training and online exploration
phases.

Meta-Learning is the core module of offline training phase.
Its functionality is on training meta-learners by automatically
generated meta-tasks. As aforementioned, the data space of
a database is decomposed into a set of subspaces, which
we term meta-subspaces, {DM

i }. The components meta-task
generation is in charge of generating meta-tasks, each of which
contains a support set and a query set (Section V) of a meta-
subspace. Then, the meta-learner training locally updates the
meta-learner by support sets, and globally updates the meta-
learner by query sets (Section VI).

Initial Exploration is the core module of online exploration
phase. At the initial stage of data exploration, a user first
selects his/her interesting attributes from the database schema
to form a user interest space Du. The Du is decomposed into
a set of subspaces mapped to meta-subspaces. Then, he/she
is presented with a selected set of initial tuples of UIS for

4Let 1 be “interesting”, and 0 be “not interesting”.

labelling, the number of which is constrained by a given
budget. The selection of initial tuples is similar to the support
set construction during meta-learning training (Section VI).
Then, user labels are collected5. Finally, user labels are fed
to pre-trained meta-learners on-the-fly to fast adapt to the real
user interests. The adapted meta-learners can determine the
result UIR.

Preprocessing is to convert an input tabular dataset into a
series of composite vectors that can be fed to meta-learners,
i.e., neural networks. The input of the module is a sampled
database, achieving good feature representability and data
scalability. The output of the module is feature-rich and high-
dimensional vectors, conforming to the input of NN training.
Details are reported in Section VII.

Optimizer is heuristically dedicated to adjusting UIS pre-
dicted by each meta-learner in few-shot exploration. For each
subspace, the module takes user labeled tuples during the
initial exploration as input. After that, it takes two optimization
steps for reducing false positives and false negatives, in
order to polish the prediction results. Details are covered in
Section VII.

Other IDE Modules. Notice that our LTE framework
can also be plugged to existing IDE systems [2], [4], [5]
by connecting the trained meta-learners to active learning
mechanisms. For being self-contained, we also briefly review
existing IDE modules [2], [4], [5] that can be combined
with our LTE framework to make a complete system: 1)
Iterative exploration. If a user wants to continue exploring
after the initial exploration phase, active learning can be
employed to feed more labelled tuples to the meta-learner
for further training [43]. 2) Convergence. The user can set
budgets for labelling, or use data visualization methods [20],
[21], [44], [45] to determine whether the exploration should
be stopped. If such prerequisites are made, our framework can
incorporate additional indicators (like three-set metric in [5])
for supporting the determination of exploration convergence.
3) Final retrieval. An IDE system returns a sampled (or
complete) set of user interest tuples, or infers corresponding
query regions based on trained classifiers. The results can also
be transformed to query filters (e.g., in SQL), if prerequisite
assumptions about UIR and query templates are made [2],
[22], [23], [46], [47].

IV. META-LEARNING PROCESS

A. Concepts

The core of the LTE framework is the meta-learning process,
which is formalized as follows.

Definition 1 (Meta-learning Process): Given a pre-defined
meta-subspace DM , a meta-task set T M , and a meta-learner
CM
θ with randomly initialized parameter θ, the meta-learning

process can be modeled as a function FM , as follows.

FM (T M , CM
θ) → CM

φ (1)

5As pointed in [5], collecting user’s labelling feedback belongs to the field
of human-computer interaction and is beyond the scope of this paper.

Here, φ refers to an initialization parameter trained with
meta-task set T M , and CM

φ refers to the learned meta-learner
equipped with φ. A quality φ helps CM

φ in efficiently ap-
proaching towards the optimization target during the online
exploration phase. Next, we formalize the concept of a meta-
task.

Definition 2 (Meta-task): A meta-task t of a meta-task set
T M has three parts, a simulated UIS RM

t , a support set Ssp
t

and a query set Sqs
t .

t : (RM
t ,Ssp

t ,Sqs
t) (2)

Following typical meta-learning settings [6], [7], a meta-
task is expected to be associated with a support set and a
query set, whereas the support set is used for updating the
meta-learner with local updates and the query set is used for
updating the meta-learner with global updates. Specifically, for
data exploration, a meta-task t is associated with a simulated
UIS RM

t , which is automatically generated.
Then, of a meta-task t, both the corresponding the support

set (Ssp
t) and query set (Sqs

t) consist of a certain number
of labelled tuples, where a tuple is labelled by checking
whether it is within the UIS. Differently, the support set is
for simulating user actions of labeling during the exploration,
and the query set is for simulating the evaluation of the trained
meta-learner.

In Figure 3, t1 is a meta-task on meta-subspace DM
1 , which

consists of UIS (the shaded region), a support set (red points),
and a query set (yellow points). Note that meta-tasks of the
same meta-subspace can share the tuples of the support and
query sets. For example, meta-tasks t1 and t2 offer different
coverages to the same set of red and yellow points.

B. The Learning Process

The meta-learning process can be viewed as a search
optimization problem on the parameter space of the meta-
learner, i.e., the domain of the parameter matrix of a neural
network. The parameter space is huge [7]. It is known that a
quality initialization parameter enables a fast convergence to
the optimization target [6] of the huge parameter space.

Intuitively, the initialization parameter is expected to have
optimization distances uniformly close to the parameters
corresponding to real tasks (during the online exploration).
However, the challenges are two-fold: 1) the real tasks are
of high diversity, which cannot be enumerated during the
pre-training; 2) the parameter space is enormous, whereas
conventional search optimization methods fall short.

In our work, the former is addressed by automatically
generated meta-tasks, consisting of a set of simulated UISs
on a meta-subspace (meta-task generation in Section V). The
latter is addressed by a meta-training algorithm under the
“gradient by gradient” setting, taking quadratic derivation for
the optimization of initialization parameters (meta-training in
Section VI).

An example of the meta-learning process is shown in
Figure 3. Suppose a meta-learning process on meta-subspace
DM

1 , which is to find an initialization parameter (φ1) from a

Meta-learning
Parameter Space

!"#

!$#

Meta-Subspaces

D2

D1

Du

θ4

θ1
Φ1

θ3θ2

Φ2

+
+

-

-meta-task %"

meta-task %$

training

training

&'"#

&'$#

Meta-
learners

R1

R2
D2

D1

Du

Ru

Meta-task Generation Meta-training

online
exploration

Fig. 3. The Meta-learning Process

random parameter (φinit). It is expected that the optimization
distances from φ1 to “anchor parameters” (e.g., θ1 ∼ θ4)
are uniformly close. An anchor parameter corresponds to a
meta-task (e.g., θ1 corresponds to t1), which can be obtained
through the meta-training with its corresponding meta-task.
The functionality of an anchor parameter is to guide the
direction of the search optimization of the meta-learning. Thus,
the quality of meta-learning process depends on the quality of
meta-tasks. Next, we discuss how the meta-tasks are generated.

V. META-TASK GENERATION

A. Meta-task Generation Algorithm

In this section, we investigate how meta-tasks can be
automatically generated for each meta-subspace, so that meta-
learning can be enabled in an unsupervised way. In general,
simulations require representing the key characteristics or be-
haviors of the data exploration process, so that two principles
can be summarized for designing a meta-task.

• Faithfulness: The tuples of support/query set should con-
form to the data distributions of a given meta-subspace,
making a basis for the quality inference of UISs. Other-
wise, the “bias” can be prorogated to the anchor parame-
ters, thus affecting the optimization of initial parameters.

• Generality: A meta-task should be flexible in covering
different tendencies of UISs, i.e., being general in putting
together different pieces of data interests of a meta-
subspace.

For the first principle, a natural solution is to sample tuples
conforming to the data distribution of a meta-subspace. In this
paper, we opt to a clustering-based sampling method, (e.g., k-
means [48]), which is proved to be primitive and effective for
summarizing data insights [2].

For the second principle, we construct a general form of
UIS, which can be represented as the composition of any
set of convex parts on a meta-subspace, thus being general
in supporting arbitrary shaped UISs, according to the convex
decomposition theory [49], [50].

The overall process about meta-task generation is formal-
ized in Algorithm 1. In general, the process consists of two
steps, clustering step (Section V-B) and task generation step,
where the latter contains UIS formulation (Section V-C) and
support/query set formulation (Section V-D).

Algorithm 1 Meta-task generation
Input: Parameters ku, ks, kq , α and ψ
Output: a meta-task set T M

1: Perform three rounds of k-means clustering (k= ku, ks, and kq), get cluster
center sets Cu, Cs, and Cq , and calculate Pu (Section V-B);

2: Generate UISs based on Cu, Pu, α and ψ (Section V-C);
3: Get Support/Query set on Cs, Cq and UISs (Section V-D);
4: Collect UISs and corresponding support/query sets to get T M .
5: return T M ;

B. Clustering Step

Clusters (or cluster centers) can be viewed as a lightweight
summary of a meta-subspace. During the clustering step, we
perform k-means clustering independently for three rounds6,
because a meta-task t is a triple, i.e., t : (RM

t ,Ssp
t ,Sqs

t). Each
round is with a different parameter k (i.e., ku for simulated
UIS, ks for support set, and kq for query set). Accordingly,
we get three sets of cluster centers Cu = {cui }i≤ku , Cs =
{csi}i≤ks , and Cq = {cqi }i≤kq , based on which the simulated
UIS, support set, and query set of a meta-task are generated.

During the clustering, we maintain two proximity matrices
for the efficiency of subsequent steps, Pu and P s, based on
Cu and Cs. The first matrix Pu stores ku × ku elements,
representing the distances between the ku cluster centers of
Cu, for constructing the simulated UIS (Section V-C). The
second P s stores ks×ku elements, representing the distances
between the ks cluster centers in Cs and the ku cluster
centers in Cu, used to expand the feature vectors of UIS (Sec-
tion VI-A) and few-shot prediction optimization (Section VII).
Without loosing generality, Euclidean distance is employed for
measuring the proximity. The proximity matrices can be done
in O(k2u + ks · ku).

C. UIS Formulation

The generated meta-task set is expected to offer good
coverage of UIS, which can be arbitrarily shaped in low-
dimensional spaces. According to the convex decomposition
theory, a region (or UIS) can be viewed as a combination
of multiple intervals of different lengths in a 1D subspace or
multiple 2D convex polygons in a 2D subspace, and similarly
in higher dimensions. Therefore, the UIS of a meta-task can
be formulated by randomly combining a set of convex shaped

6The clustering is run on a randomly sampled (1%) subset of the tuples of
the meta-subspace for scalability.

parts on a meta-subspace. In this paper, we implement an
efficient and straightforward generation method, which utilizes
sampled tuples to construct multiple external convex regions
to combine into the final simulated UIS. Moreover, we can
control the size of a part and the number of parts, by changing
the selection of the sampled tuples.

To generate a meta-task, we start by constructing a sim-
ulated UIS, which requires three steps. First, we randomly
select a cluster center cj ∈ Cu, and retrieve the set Sj of cj’s ψ
nearest neighbors (i.e., cluster centers), where Sj = ψNN(cj)
and Sj ⊆ Cu. It can be done with the proximity matrix Pu

in O(ku).
Second, we build the convex hull for Sj , represented by

Cvx(Sj), which is the largest circumscribed convex polygon
for the cluster centers. Notability, there can be other options
for the circumscribed region, such as minimum bounding
rectangles or circles. It can even be concave, as long as the
selected cluster centers are circumscribed. In our implementa-
tion, convex hulls are adopted for their simplicity. The convex
hull serves as the basic building block of a UIS, which can be
done in O(ψ · log(ψ)). The first two steps are repeated until
α convex hulls are collected.

Finally, the α convex hulls are combined to get a simulated
UIS, RM

t =
!

j≤α Cvx(Sj). Notice that the UISs in existing
works can be viewed as special cases generated by the above
method. For example, [5] assumes the UIS as a connected
convex region (α = 1). In our implementation, we do not
explicitly maintain the exact shapes of RM

i . All we need
is to determine, during the offline training, if a point of
the meta-subspace is within the given UIS, which can be
transformed into determining if a point is located within any
of the α convex hulls. It can be done in O(α · log(ψ)). In
empirical studies (Section VIII-C), we also consider different
combination of ψ and α as a UIS mode, and examine the
performance on various modes.

D. Support/Query Set Formulation

We can use a generated UIS to formulate the corresponding
support and query sets. we first take the ks cluster centers from
Cs as tuples of the support set. The label y of each tuple is
determined by checking if it belongs to the corresponding UIS.
To increase the generality of meta-training, we further sample
a few tuples randomly from the meta-subspace. Therefore, the
size of the final support set is ks +∆7. The query set is built
in a similar way on Cq . The size of the query set is kq +∆.

Notably, since the role of the support set is to simulate
the set of tuples labeled by users, the initial tuples for online
exploration in the LTE framework are also generated by the
clustering step, for a subspace. Then, for each tuple of a
subspace, a user needs to label it for initial exploration8.

7The default ∆ is 5 in our implementation.
8If there exist assumptions on the UISs of subspaces [2], [4], [5], we can

put the subspaces that have a conjunctive relationship into a group to reduce
the number of subspaces labeled by the user.

E. Discussion

Dynamic Maintenance. The meta-learner is trained on the
basis of meta-tasks, and meta-tasks are built on sampled tuples.
So, one only needs to check if sampled tuples should be
updated to decide if the meta-tasks and meta-learners should
be updated, when the data distributions of the meta-subspaces
change. Then, the problem is reduced to check for each
subspace whether its corresponding clustering results violate,
if the exploratory database is updated. The solution is to
capture the locality of dynamic changes to data distributions of
subspaces, corresponding sampled tuples set, and meta-tasks.
To this point, existing works of dynamic clustering [51], [52]
can be applied. Details about dynamic clustering are beyond
the scope of the paper are omitted due to page limits.

Splitting Data Space to Meta-subspaces. The data space
should be split into a set of mutually exclusive meta-
subspaces in the offline phase. One may establish as many
meta-subspaces as possible, for the matching with subspaces
specified in the online phase. However, one may need to
generate

"|A|
d

#
d-dimensonal meta subspaces for covering all

possibilities of splitting a |A|-dimensional space, which can
be costly. On one hand, we can determine some commonly
used meta-subspaces based on the semantic/dependency rela-
tionship between attributes, or logs of user exploration. On
the other hand, even if the meta-learner is not used for the
subspace, the basic NN classifier combined with tabular data
preprocessing still achieves better performance than existing
methods (Section VIII-C). In our implementation, the domain
space is randomly split into meta-subspaces, because we
assume zero knowledge about data semantics and user priors.

VI. META-LEARNING TRAINING

Given a meta-subspace DM with the meta-task set T M .
Each meta-task t ∈ T M contains a simulated UIS RM

t , a
support set Ssp

t and a query set Sqs
t . Both query and support

sets are composed of a set of 2-tuples {τ, y
R,τ }, where τ ∈

DM is a meta-subspace tuple, and y
R,τ is the label indicating

whether τ belongs to UIS RM
t of t. The meta-training goal

is to find suitable initialization parameters φ, so the neural
network classifier CM

θ can fast adapt to CM
φ .

We first introduce a UIS classifier based on neural networks
in Section VI-A, and memory-augmented optimization for
meta-learning in Section VI-B. After that, we propose the
meta-learning algorithm in Section VI-C.

A. Basic UIS Classifier

We introduce a NN classifier, which contains three building
blocks: UIS feature embedding block, Data tuple feature
embedding block, and Classification block.

UIS Feature Embedding Block (fθR). To enrich the input
features of the classifier in the few-shot exploration. We
construct a 0/1 vector of length ks from the set Cs, where
each vector bit corresponds to a cluster center in Cs. The bit
is assigned to 1, if the user is interested in the corresponding
cluster center, and 0 otherwise. Notice that the bit position of
the vector representing a cluster center is fixed and is therefore

consistent all through the training phase. To a certain extent,
the vector reflects structural features of UIS for a given task.
Meanwhile, Cs as a predetermined unified set can ensure the
comparability of different UISs’ features, so that the UIS-
Feature Embedding Block in Section VI-B can extract higher-
level mode information from a large number of UISs’ features.

Since ks reflects the number of tuples to be labelled initially
with a limited budget, it corresponds to a small value. As a
result, the feature vectors in some fine-grained UIS may be
highly sparse. So, we enlarge the vector from set Cs to set
Cu, with a heuristic expansion technique.

Specifically, for any bits of the original ks-bit feature vector
are 1, we first retrieve the cluster centers represented by such
bits in Cs, then get their l-nearest neighbors from Cu, by using
the precomputed ks×ku proximity matrix P s. l represents the
degree of heuristic expansion, which is set to a constant value
(e.g., l = 0.1×ku by default). Finally, we redefine a 0/1 vector
of length ku and set all the bits corresponding to the cluster
centers located in Cu to 1. For a meta-task t’s UIS RM

t , this
vector is known as the UIS feature vector vR ∈ Rku . Thus,
our embedding block fθR can be expressed as:

embR = fθR(vR), (3)

where θR represents the parameters of fully connected layers,
and embR represents the output of the embedding layer.

Data Tuple Embedding Block (fθτ). Assuming that a data
tuple τ ’s representation vector is of size Nr, denoted by vτ ∈
RNr , this block can be written as:

embτ = fθτ (vτ), (4)

where θτ represents the fully connected layer parameters, and
embτ represents the output of the embedding layer. For fθR
and fθτ , we set the embedding size to Ne. Thus, embR and
embτ are equally sized, embR, embτ ∈ RNe .

Classification Block (fθclf). Given a meta-task t ’s UIS
feature embedding embR, and a list of the corresponding data
tuple embeddings embτ for τ ∈ Ssp

t or Sqs
t , we can get the

predicted label ŷ
R,τ by classification block fθclf :

ŷ
R,τ = fθclf ([embR, embτ]), (5)

where [embR, embτ] is the concatenation of the UIS em-
bedding and the data tuple embedding, and θclf denotes the
parameters of fully connected layers for classification block.

Thus, the parameters θ for CM
θ is {θR, θτ , θclf}, and the goal

of meta-learning is to get the learned initialization parameters
φ = {φR,φτ ,φclf}.

B. Memory-Augmented Optimization.

Inspired by [53]–[55], we utilize extra memories (param-
eters matrices) to store and update some model parameters
to overcome the problem that the conventional meta-learning
method is easy to slip into the local optimum. Since the basic
meta-learning method assigns the same learned initialization
parameters (e.g., {φR,φτ ,φclf}) to model parameters (e.g.
{θR, θτ , θclf}) for all tasks during meta-training and the actual
use, we hope these learned parameters can be fine-tuned

appropriately on different tasks to obtain task-wise parameters.
Based on these initialization parameters, we can use labeled
tuples to train the classifier more efficiently in the optimization
direction of the current task. Therefore, we introduce two
types of memories similar to [54], UIS-feature memory and
embedding-conversion memory. The former memory focuses
on adjusting the learned initialization parameters of the UIS
feature embedding block. The latter memory focuses on the
conversion of parameters before inputting [embR, embτ] into
fθclf . Noted that the two memories will be updated simulta-
neously with the meta-learning process.

UIS-Feature Memory. The UIS-feature memory includes
the UIS embedding parameters matrix MR, and the UIS
feature vector matrix MvR

. Given a certain task t, the meta-
learned initialization parameters of the UIS feature embedding
block is φR. Our goal is to fine-tune φR to obtain the task-wise
initialization parameter θR:

θR ⇐ φR − σωR, (6)

where ωR represents the parameters that need to be adjusted
on φR (i.e., ωR is a bias term [53], [54]), and σ ∈ [0, 1] is
a hyper-parameter that indicates how much φR needs to be
updated. Since we expect ωR to be associated with a specific
task, we adopt the following method to obtain it:

First, we calculate an attention values aR form MvR that
stores information relevant to a UIS feature vector vR:

aR = Sim(vR,MvR
), (7)

where MvR
∈ Rm×ku is a m × ku matrix storeing the

mode information extracted from the UIS feature vectors of
all meta-tasks during the meta-learning training. Here, m
is a hyper-parameter, representing the number of implicit
modes/patterns [53], [54] we want to extract from the UIS
feature vectors of the meta-task set. Sim function calculates
the Cosine similarity between a UIS feature vector vR and
MvR

, which is normalized by SoftMax function. Thus, we
can get aR ∈ Rm. Then, the retrieval attention value aR is
applied for extracting parameters ωR from the memory MR:

ωR = aTRMR, (8)

where each row of MR keeps the parameters (fast gradi-
ents/bias terms of fully connected layers) of the UIS feature
embedding block. Since the UIS embedding block may be
comprised of more than one fully connected layer and more
than one parameter, MR ∈ Rm×|θR| is not a numerical matrix
but stores all the parameters in the same form as the parameters
in the UIS embedding block (parameters size is |θR| for both).

The two memory matrices are randomly initialized at the
training beginning and will be updated during global update
phase of meta-learning.

Embedding-Conversion Memory. The memory aims to
obtain task-wise embedding conversion parameters for
[embR, embτ] ∈ R2Ne , corresponding to a specific task. We
employ an extra parameters matrix Mcp ∈ RNe×2Ne to store

Algorithm 2 Training process of meta-learning
Input: Meta-task set T M ; UIS feature vector vR for t ∈ T M , Representation vector
vτ and true label y

R,τ for tuple τ ∈ SSp
t , SQs

t ; Hyper-parameters η, β, γ,σ, ρ,λ;
Output: Learned parameters: φR,φτ ,φclf ,MR,MvR

,MCP ;
1: Random initialize φR,φτ ,φclf ,MR,MvR

,MCP ;
2: while not reach training epochs do
3: for t ∈ T M do
4: Get aR (Equation 7), Initialize θR (Equation 6);
5: Initialize θτ , θclf (Equation 11), Mcp (Equation 12);
6: for {τ, y

R,τ } ∈ Ssp
t do

7: Get embR, embτ (Equation 3,4);
8: Get prediction label ŷ

R,τ (Equation 9);
9: Locally update θR, θτ , θclf (Equation 12);

10: Locally update Mcp by back-propagation;
11: Globally update MvR,MR,MCP (Equation 14,15,16);
12: for {τ, y

R,τ } ∈ Sqs
t do

13: Globally update φR,φτ ,φclf (Equation 13);
14: return φR,φτ ,φclf ,MR,MvR

,MCP ;

the conversion parameters. Thus, Equation 5 can be rewritten
as :

ŷ
R,τ = fθclf ([embR, embτ]) = fθclf (Mcp · [embR, embτ])

(9)
Similar to the UIS-feature memory, we employ the attention
value aR to retrieve the parameters Mcp from the global
conversion parameters matrix MCP :

Mcp = aTR ·MCP , (10)

where MCP ∈ Rm×Ne×2Ne stores the “equalization” con-
version parameters with m implicit modes/patterns, which are
extracted from the conversion parameters obtained on all meta-
tasks.

During meta-learning training, Mcp will be updated in the
local update phase together with the updates of parameters
of the classifier, and MCP will be updated with Mcp in the
global update phase.

C. Training strategy

Algorithm 2 depicts the entire meta-learning process. At the
beginning of the training, we randomly initialize all global
parameters (including the parameters of the classifier and
extra memories): φR,φτ ,φclf ,MR,MvR

, and MCP . After
that, according to the sequence of parameter updates, we
divide the training process into local and global phases.

Local Update on the Support Sets. The phase refers to
the updating of local parameters: θR, θτ , θclf ,Mcp on the
support set. For each task t ∈ T M , we have support set
Ssp
t . During the local update phase, we first initialize the local

classifier parameters : {θt, θd, θclf ,Mcp}. We use Equation 6
for initialization of θR, and Equation 12 for Mcp. Since θτ
and θclf do not involve memory-augmented optimization, we
use the conventional meta-learning initialization method [6]:

θτ ;⇐ φτ ; θclf ⇐ φclf (11)

The optimization goal for a single task in local training
is to minimize the loss of the classification. Thus, the local
parameters will be updated as:

θ∗ ⇐ θ∗ − ρ ·∇θ∗LossFunc(y
R,τ , ŷR,τ) or ∇Mcp, (12)

where ∗ could be any element in {R, τ, clf}; ρ is the learn-
ing rate for updating local parameters. It is worth noting
that the parameters in Mcp are also updated through back-
propagation [55].

Global Update on the Query Sets. The phase aims to update
global parameters: φR,φτ ,φclf ,MR,MvR

, and MCP .
According to the “gradient by gradient” setting of meta-

learning training [6], we need to perform gradient descent on
the locally updated gradient on the support set by minimizing
the loss on the query set Sqs

t to update the global parameters
φR,φτ , and φclf . In order to save the cost of training, after
the local update on support sets of all meta-tasks, we update
the global parameters by taking one-step gradient descent
like [54]. Thus, the global parameters are updated by

φ∗ ⇐ φ∗ − λ
$

T M

$

Sqs
t

∇LossFunc(θ̂∗), (13)

where ∗ could be any element in {R, τ, clf}. θ̂∗ is the
parameters of CM

θ after training on all support sets, and λ
is learning rate.

Meanwhile, MR,MvR
, and MCP will also be updated as

follows. MvR
and MR will be updated as [54]:

MvR
= η · (aR × vTR) + (1− η)MvR

, (14)
where × denotes the cross-product, and η is a hyper-parameter
to control how much new UIS feature information is added.
We add the attention mask aR, when adding the new feature
information so that the new information will be attentively
added to the memory. Similarly, the MR will be updated by

MR = β · (aR∇θR(LossFunc(y
R,τ , ŷR,τ)) + (1− β)MR),

(15)
where β is the hyper-parameter to control how much new in-
formation is kept. MCP will be updated in the following [55]:

MCP = γ · (aR ⊗Mcp) + (1− γ)MCP , (16)

where ⊗ denotes the tensor product, and γ is a hyper-
parameter to control how much new information from con-
version parameters should be added.

In the online exploration phase, the steps to train the meta-
learners by user-labeled tuples are similar to the local update
of meta-learning (see the underlined steps in Algorithm 2),
except that we directly use the learned global parameters and
extra memories.

Discussion. The overhead of the meta-learning is mostly
dependent on the size of the meta-task set |T M | (see Sec-
tion VIII-D). Since a well established T M needs to tra-
verse as many instances as possible in the meta-subspace,
|T M | ∝ dim(DM). In summary, we apply meta-learning to
low-dimensional subspaces, which, 1) conforms to the strategy
of high-dimensional space decomposition of existing IDEs,
and 2) significantly reduces the training overhead.

VII. PREPROCESSING AND OPTIMIZATION

A. Tabular Data Preprocessing

It refers to the preprocessing for tabular before the meta-
learner training, during the offline phase. A straightforward

way is to use the maximum and minimum normalization to
process the database (numerical attribute) tuples. However, the
method is far from providing feature representations that guar-
antee the essential performance of NN classifiers. Moreover,
training NN classifiers with simple normalization in a low-
dimensional data space may cause gradient saturation [56],
when training with few-labeled tuples.

In our implementation, the tabular representation is based on
multi-modal attribute features, extracted by Gaussian mixture
model (GMM) [57] and Jenks natural breaks classification
(JKC) [58], [59]. The representation vector of an attribute
value is the concatenation of two parts. The first part is a
one-hot vector, indicating which GMM component or JKC
interval the value belongs to. The second part is a value of
range [0, 1], which is the normalized value on its corresponding
GMM component or JKC interval.

Thus, given a database attribute aj , and a set of tuples of
aj sampled from the database T s

j , the tabular representation
transforms τj to vτj (Algorithm 3). A tuple contains multiple
attributes, and therefore the vector representation of the tuple
is obtained by concatenating the vector representations on all
attributes. Next, we discuss GMM and JKC models.

Gaussian Mixture Model. We can capture the feature of the
attribute values by training the GMM composed of a series of
Gaussian distribution components. Suppose a batch of sample
data for a certain attribute, we may get the set of Gaussian
distribution components {gi}i≤|g|, in accordance to the spec-
ified number of components, |g|, for the GMM training. The
mean and variance of each component gi are represented by µi

and θi, respectively. Then, given an attribute value τj , we can
compute the probability distribution {pj1, .., p

j
|g|} that the value

belongs to the components, and choose the one maximizing
the likelihood, as the GMM component corresponding to τj .

Jenks Natural Breaks Classification. JKC is a data clus-
tering method designed to determine values’ best arrangement
to different classes, called Jenks Natural Breaks intervals, or
JKC intervals. JKC divides the distribution of a numerical
attribute into approximately smooth JKC intervals, {bi}i≤|b|,
by minimizing the variance within an interval, and maximizing
the variance between different intervals. We can also specify
the number of JKC intervals, |b|. Then, given an attribute value
τj , we can quickly determine which JKC interval it belongs to,
by comparing with boundary values of different JKC intervals.

Notice that GMM is suitable for processing numerical
attributes with distribution composed of one or more peaks,
i.e., unimodal and multimodal distributions, according to [60].
Also, we find that there are a large number of numerical
attributes with distributions composed of smooth intervals,
like trends or time series, which are more suitable for being
processed by JKC or other interval scanning techniques [61].
In addition, Using GMM or JKC for the entire exploratory
database can be costly, though it is effective. A practical
solution is to make tabular representation on sampled data,
so that the scalability can be ensured. In our work, we use
random sampling and limit the sampling ratio under 1%.

Algorithm 3 Tabular data preprocessing
Input: T s

j , a sampled tuple set on attribute aj ; τj , a tuple to be represented on aj ;
|g|, # of GMM components; |b|, # of JKC intervals;
Output: vτj , a represented vector for τj
1: {gi}i≤|g| ← GMM(T s

j , |g|) or {bi}i≤|b| ← JKC(T s
j , |b|);

2: if using GMM then
3: Compute {pj

1, .., p
j
|g|} for τj and k = argmaxκ pj

κ ;

4: labelj ←ont-hot(gk , {g1, .., g|g|}); Normj ← τj−µk
2θk

;
5: if using JKC then
6: Find the JKC interval bk corresponding to τj ;
7: labelj ←one-hot(bk , {b1, .., b|b|}); Normj ← τj−bk.min

bk.max−bk.min ;
8: return vτj

← labelj ⊕ [Normj];

B. Optimization for Few-shot Prediction.

The purpose of a classifier is to predict a UIS during online
exploration. The quality of prediction can be measured by
“false positive” (FP) and “false negative” (FN). FPs refer to
errors of falsely predicting tuples that are “not interest” as
“interest” to a user. FNs refer to errors of falsely predicting
tuples that are “interest” as “not interest” to a user. Given a
well-trained classifier, the quality is much dependent on the
“few shots” during the online training. we study optimizations
for quality refinement. Note that since we study UIS of
arbitrary shapes, the optimization method is heuristic and
preliminary. It thus creates a vacuum for further optimization
over specified UISs based on our approach.

For FP Errors. We study an inevitable source of FP errors
which are common for few-shot learning. An uninteresting
tuples far away from user labeled tuples could be randomly
predicted by a classifier as “interesting”, because of lacking
of sufficient information. Thus, we hope to get a superset
of UIS to fix such errors. First, we use positively labelled
tuples by users as “anchor points”. Then, we retrieve the
proximate tuples of anchor points to build a set of large-scale
circumscribed regions. The combination of large-scale regions
(called “outer-subregion”) is conceived to cover the real UIS.
For the tuples located within the outer-subregion, we follow
the prediction of classifiers, so that there is no chance of a
negative tuple being recognized as positive, and vice versa.
Also, classifiers revise a tuple from positive to negative, if the
tuple is not covered by the outer-subregion, i.e., beyond UIS.

In our implementation, the approach of searching neigh-
boring tuples is similar to expanding the UIS feature vector in
Section VI-A. After tuples are labelled in the initial exploration
phase, for each cluster center that is identified as “interesting”
in Cs, we search for Nsup more proximate cluster centers from
other cluster center set (e.g., Cu) by proximity matrix P s(see
Section V-B). Parameter Nsup reflects the extent of expansion,
in our implementation, we set it to ku or kq multiplied by a
certain scale factor. Then, we construct a circumscribed region,
e.g., convex hull, on these cluster centers. Finally, all convex
hulls are combined as the outer-subregion.

For FN Errors. Similarly, an inevitable source of FN errors
originates in the randomness of classifier prediction under few-
labeled tuples. A type of FN errors appear as some small
“false” regions within the real UIS, which are predicted as “not
interesting” by classifiers. As a result, we build a small-scale

circumscribed region set (called inner-subregion) from the
positive tuples in the initial tuple set, which can be considered
a subset of the UIS. We can infer that the tuples in the inner-
subregion should be positive, since they are located within the
UIS. Also, classifiers revise a tuple to positive, if it is falsely
recognized as negative, i.e., located within an inner region.
The approach of constructing the inner-subregion is the same
as that of the outer-subregion, except that the expansion step
size Nsub is significantly less than Nsup, which we term as
conservative expansion.

VIII. RESULTS

A. Setup

Datasets. We use 2 public datasets, SDSS 9 and CAR 10,
which are commonly used in previous works. SDSS is a
scientific dataset of sky objects [62]. We use 100K tuples of 8
attributes follow the settings of [5]. CAR has 50K tuples for
second-hand car information in eBay. We select 5 commonly
used attributes out of 19 attributes based on the guidance
in [62]. For each dataset, data space is randomly split into a
set of 2D subspaces, in consistency with settings of baselines
for fair comparison.

Baselines. There are two state-of-the-arts for UIR/UIS clas-
sification, DSM [5] and AL-SVM [4]. The settings of DSM
and AL-SVM follows the settings in [5] and [4], respectively.
AL-SVM uses active learning to select training tuples for
SVM. DSM improves AL-SVM by incorporating the polytope-
based optimization. To fully examine the performance of LTE,
we list several variants, Basic, Meta, and Meta*. Basic uses
basic UIS Classifiers without any optimization. Meta improves
Basic with meta-learning. Meta* adopts all optimizations
proposed (i.e., using the optimizer module based on Meta),
Note that the effect of the optimizer is completely dependent
on the underlying results of the meta-learner, and the optimizer
cannot be used alone.

Metrics. Accuracy and efficiency are two common metrics
for IDE evaluation. Accuracy is measured by F1-score =
2·precision·recall
precision+recall . Efficiency refers to cost efficiency, which is
constrained by budget B,i.e., the number of labelled tuples
needed.

Parameters11. Meta-task generation: we set the ku = 100
and kq = 200 in each meta-subspace. Since the size of
support sets (ks + ∆) reflects the exploration budget B for
labelling, we trained the corresponding meta-learners under
B = {30, 40, 50, 100}. We set α = 1 and ψ = 50 for
generating meta-tasks following the setting of baselines in
Section VIII-B. We set α = 4 and ψ = 20 for generating
meta-tasks to study the adaptability of our method to various
types of complex UISs in Sections VIII-C. We also test the
performance by varying the size of the meta-task set |T M | as
{1000, 5000, 10000,15000}. Meta-learning training: for the
meta-learner, we set the embedding size Ne = 100 and use

9https://www.sdss.org/dr17/
10https://data.world/data-society/used-CARs-data
11The default parameters are bolded.

(a) Accuracy w.r.t Dimension (b) Efficiency w.r.t Dimension

Fig. 4. Learn-to-explore vs. Baselines (SDSS)

the Relu activation function between all layers. By searching
for meta-learning training hyper-parameters [54], we search
η,β, γ,σ, ρ,λ in {0.01, 0.001, 0.0001, 0.00005} and m in
{2, 4,6}. The number of training epochs is in {1, 2, 3,4}.
The training batch size is in {5, 10,15} and the training
step size is in {5, 10, 20,30} for the local update phase.
Optimizer: we set Nsup as {20%,30%, 40%} of ku and Nsub

as {5%, 10%, 15%} of ku.

B. Comparison with Baselines

For comparison with baselines, we follow DSM and AL-
SVM’s assumption on subspatial convexity and conjunctivity.
Therefore, for a testing UIR in the high dimensional space, we
construct convex UIS in low-dimensional subspaces by convex
hull model (i.e., fixing α = 1 and vary φ ∈ {20, 15, 10, 5})
and use the conjunctive property to unite these UISs to get
final UIR. We totally generate 2,500 UIRs from 2D to 8D for
testing, and the result is in Figure 4. In addition, the result
of our proposal without UIR assumptions is to be shown in
Section VIII-C. Notice that the cost of initial sampling [63]
for baselines is not counted in their statistics, in all testings.

Figure 4(a) examines the effect of dimensionality over the
accuracy, by fixing B to 30. It shows that the accuracy
decreases w.r.t. the increase of dimensionality, for all com-
petitors. It is because that the selection of representative tuples
becomes more difficult, due to the sparse data distribution of
a higher dimensional space. Compared to the sharp drop of
SVM-based methods, DSM and AL-SVM, the performance
of NN-based methods are much more stable. In particular, the
F1-score of DSM decreases about 75% when the number of
dimensions changes from 2 to 8. In comparison, the drop rate
of all NN-based classifiers are steadily below 40%. Among
them, the number of Meta* only drops about 18%, showing
good scalability with dimensions.

Figure 4(b) examines the effect of dimensionality over
efficiency, by fixing F1-score to 0.75. It shows that Meta*
can achieve a given F1-score with a budget of less than 150
labeled tuples on 4-8D. However, DSM and AL-SVM require
more than 150 labeled tuples in 6-8D (especially in 8D, far
exceeding 150), which can be tedious for users. Since DSM
outperforms AL-SVM in all testings, we only show the result
of DSM in following experiments.

We test the effect of exploration budgets B over the ac-
curacy in Figure 5 (a-d). It shows that all methods’ accuracy
increases, if the given budget increases. DSM performs better
for 2D space, because experiments are done following the

(a) Results on 2D (b) Results on 4D (c) Results on 6D (d) Results on 8D

Fig. 5. Accuracy w.r.t. B (SDSS, 4-8D)

Fig. 6. Efficiency in Online Explo-
ration

(a) Accuracy w.r.t. B (CAR) (b) Accuracy w.r.t. B (SDSS) (c) Accuracy w.r.t. UIR Dim (SDSS)
Fig. 7. Performance on Generalized UIRs

(a) GMM vs. JKC (b) Pretraining Cost w.r.t. |T M | (c) Accuracy w.r.t. |T M | (d) Accuracy w.r.t Learning Rate
(Online exploration)

Fig. 8. Analysis

TABLE II
ACCURACY W.R.T. UIS MODES (B=30)

M1 M2 M3 M4 M5 M6 M7

CAR

Meta* 0.839 0.723 0.544 0.307 0.71 0.749 0.786
Meta 0.795 0.667 0.486 0.266 0.606 0.673 0.731
Basic 0.737 0.612 0.421 0.231 0.462 0.568 0.652
SVMr 0.712 0.562 0.331 0.127 0.450 0.531 0.624
SVM 0.683 0.487 0.206 0.017 0.316 0.468 0.598

SDSS

Meta* 0.866 0.813 0.704 0.459 0.804 0.813 0.838
Meta 0.812 0.744 0.605 0.380 0.758 0.771 0.782
Basic 0.761 0.680 0.547 0.339 0.696 0.697 0.717
SVMr 0.758 0.645 0.373 0.156 0.573 0.628 0.692
SVM 0.747 0.556 0.164 0.023 0.319 0.502 0.647

TABLE III
MODES OF TEST BENCHMARKS

Mode M1 M2 M3 M4 M5 M6 M7
α 4 4 4 4 1 2 3
ψ 20 15 10 5 20 20 20

convexity and conjunctivity assumptions, which best fit its
polytope-based optimization [5]. However, the performance of
DSM degrades fast as the increase of dimensionality, which is
consistent with the observation in Figure 4. For example, in 8-
dimensional space, the F1-score of DSM is below 20%, when
B = 30, and is below 41% when B = 105. Compared to that,
our methods, Meta and Meta*, scale well w.r.t. the number
of dimensions. The accuracy of Meta and Meta* dominates
that of DSM. For example, when |Du| = 8 and B = 30, the
F1-score of Meta* is 267% of that of DSM.

We test the efficiency by collecting the runtime cost during
the online exploration phase, for all competitors, in Figure 6.
It shows that the online training time of DSM increases
almost linearly w.r.t. the given budget. Also, if the number
of dimensions increases, the training time takes longer. For
example, DSM takes about 50 and 60 seconds when B
equals 105, on 4- and 8-dimensional spaces, respectively.
Compared to that, Meta*’s online exploration cost is two
orders of magnitude lower because we save much cost by
avoiding the online active learning process. When the number
of dimensions increases from 4 to 8, the online exploration
cost only increases from 0.127s to 0.130s. It implies that our
method has more potentials to provide the data exploration as
a service, for a large number of users to access simultaneously.

C. Performance on Generalized UIRs
Our proposal supports UIRs, generalized from convex UIS

to concave or even disconnected UIS in subspaces. We com-
pare our proposals with SVM classifiers, since DSM degener-
ates into SVM classifiers, if UIS is not convex [5]. We consider
a variant SVMr referring to using tabular data preprocessing
in addition to SVM. All competitors are fed with the same set
of initial training tuples for fair comparison.

The performance is tested on different UIS modes, which
are randomly generated following the way of meta-task gen-
eration, as specified by two hyper-parameters, α and ψ. To

test the results on the combination of the two parameters, we
first fix α to 4 and vary ψ ∈ {20, 15, 10, 5}, then fix ψ to 20
and vary α ∈ {1, 2, 3}, so that we get 7 UIS modes (M1-M7),
as shown in Table III. For each mode, we generate 100 UISs
for each subspace. According to the statistics of generated
UISs, 92% of UISs are concave, 55% of them consist of
separated regions. Note that the meta-tasks used to train the
meta-learners is only generated under α = 4, and ψ = 20, and
all subsequent experiments follow this setting.

Table II shows the performance of each mode under la-
belling budget B = 30. It shows that NN-based methods out-
perform SVM-based variants. Meta-learning based methods,
Meta and Meta*, further improve basic in all testing modes.
For example, for M4, the F1-score of Meta* is 164% of that
of SVM on CAR, showing the superiority of our method.
Also, SVMr is better than SVM, due to the effectiveness of
tabular data preprocessing. We then test the effect of meta-
learning by comparing Meta and Basic. It shows that, from
M5-M7 (CAR), the improvement of Meta over Basic is about
31%, 18%, and 12%, when α is set to 1, 2, and 3. We also
find that the improvement of Meta and Meta* over Basic
is more significant, when α is small. Intuitively, a smaller
α corresponds to a simpler task, thus the predicability can
be higher. Compared to that, the trend over ψ is relatively
stable. Similar results are observed on SDSS. The above results
show that the meta-learners trained under larger α and ψ also
perform well on UIS configured by small α and ψ, so that we
recommend larger valued α and ψ for meta-task generation.

We also test the performance by varying budget B from
30 to 100 in Figures 7(a) and 7(b), for CAR and SDSS,
respectively. It shows that if the given budget increases, the
accuracies of all methods except SVM increase. The reason
is that when SVM handles a complex UIS, it is difficult
to determine the appropriate hyper-parameters and kernel
functions. In addition, our methods, Meta* and Meta, better
predict complex UIS under a small B with meta-knowledge.
For example, on CAR, Meta with B = 55 achieves the same
performance as Basic with B = 80.

Then, we show the performance w.r.t. dimensions of UIR,
being generated by combining UISs from low-dimensional
subspaces. UISs are generated according to Table III. Fig-
ure 7(c) examines the effect of accuracy over dimensions, with
B = 30. It shows that our method achieves relatively stable
performance in different dimensions when UIR is complex.

D. Analysis

GMM vs. JKC. We study the effectiveness of tabular
representations, JKC and GMM, as multi-mode feature mod-
els, in Figure 8(a). If with GMM, the F1-score can be as
high as 0.55 for 2D case. Basic integrates JKC and GMM
representations, whose performance can be further improved
(e.g, F1-score= 0.67 for 2D case). Without JKC and GMM,
the model can hardly be trained and used, with a F1-score
even much lower than baselines.

Pre-training Cost. We investigate the performance of run-
time efficiency and accuracy w.r.t. the number of meta-tasks in

Figures 8(b) and 8(c). The runtime cost refers to two parts, the
generation time for meta-tasks, and training time. Both of the
two parts are linearly proportional to the number of meta-tasks,
as shown in Figure 8(b). Meanwhile, we find that the runtime
cost does not depend on the dataset size. For example, CAR
takes only half of the data size of SDSS, but the training time
is only 12% less. We also test the accuracy w.r.t. the number of
meta-tasks in Figure 8(c). It shows that for both datasets, the
accuracy is not sensitive to the number of meta-tasks, except
the number of tasks is low, e.g., |T M | = 1, 000. There exist
some fluctuations in Figure 8(c), which are consistent with
the consensus [7] that the meta-learning performance w.r.t.
the number of meta-tasks follows a gradual transition from
positive correlation to fluctuation with stationarity. So, we can
do an early stop for meta-training by finding a “sweet point”
of accuracy and efficiency. According to Figures 8(b) and 8(c),
when |T M | = 5, 000, the accuracy is almost at the peak, while
the training runtime cost is low.

The Effect of Meta-Learning. We study the effect of meta-
learning by comparing Basic and Meta, under different values
of learning rates. We only compare the two to show the
effectiveness of meta-learning, by eliminating the influence of
other factors. The learning rate refers to the step size at each it-
eration, while moving towards the minimum of a loss function
during optimization. For offline training, a small learning rate
(0.00005) is chosen to conservatively and deliberately capture
the meta-knowledge. For online exploration, a large learning
rate is preferred for fast converging to UIR. The result is
shown in Figure 8(d), where Meta steadily outperforms Basic.
The improvement is achieved because Meta is equipped with
meta-knowledge, in form of good initial parameters, so the
sensitiveness to learning rates is low and the performance is
stable. So, Meta can achieve good results at a small learning
rate. For example, when learning rate is 0.0001, the F1-score
of Meta is 0.7, but the F1-score of Basic is only 0.25, which
is 64% lower, on SDSS. Similar results are observed on CAR.

IX. CONCLUSION

In this paper, we study the problem of interactive data
exploration by proposing a “learn-to-explore” framework. The
framework leverages meta-learning based neural network clas-
sifiers, which are pre-trained by automatically generated meta-
tasks in an unsupervised manner, and are fast adapted to opti-
mal parameters during the online exploration. The framework
can be plugged to existing IDE systems by providing good
initial parameters for classifiers, thus yielding good accuracy
and efficiency. To implement such a framework, we study
a set of techniques, including meta-task generation, meta-
training, etc. Experiments on real datasets show that our
proposal outperforms existing solutions in terms of accuracy
and efficiency.

X. ACKNOWLEDGEMENTS

This work is supported by NSFC (No.61772492, 62072428),
the CAS Pioneer Hundred Talents Program. Xike Xie is the
corresponding author.

REFERENCES

[1] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview of data
exploration techniques,” in SIGMOD, 2015, pp. 277–281.

[2] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-example:
an automatic query steering framework for interactive data exploration,”
in SIGMOD, 2014, pp. 517–528.

[3] T. Milo and A. Somech, “Automating exploratory data analysis via
machine learning: An overview,” in SIGMOD, 2020, pp. 2617–2622.

[4] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “AIDE: an active
learning-based approach for interactive data exploration,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 11, pp. 2842–2856, 2016.

[5] E. Huang, L. Peng, L. D. Palma, A. Abdelkafi, A. Liu, and Y. Diao, “Op-
timization for active learning-based interactive database exploration,”
Proc. VLDB Endow., vol. 12, no. 1, pp. 71–84, 2018.

[6] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017, pp. 1126–1135.

[7] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-
learning in neural networks: A survey,” CoRR, vol. abs/2004.05439,
2020.

[8] K. Hsu, S. Levine, and C. Finn, “Unsupervised learning via meta-
learning,” CoRR, vol. abs/1810.02334, 2018.

[9] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “New trends
on exploratory methods for data analytics,” Proc. VLDB Endow., vol. 10,
no. 12, pp. 1977–1980, 2017.

[10] S. B. Roy, H. Wang, U. Nambiar, G. Das, and M. K. Mohania, “Dynacet:
Building dynamic faceted search systems over databases,” in ICDE,
2009, pp. 1463–1466.

[11] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi, “Distributed and
interactive cube exploration,” in ICDE, 2014, pp. 472–483.

[12] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden, and I. Stoica,
“Blink and it’s done: Interactive queries on very large data,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1902–1905, 2012.

[13] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou, “The researcher’s
guide to the data deluge: Querying a scientific database in just a few
seconds,” Proc. VLDB Endow., vol. 4, no. 12, pp. 1474–1477, 2011.

[14] A. Kalinin, U. Çetintemel, and S. B. Zdonik, “Interactive data explo-
ration using semantic windows,” in SIGMOD, 2014, pp. 505–516.

[15] A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data canopy: Accelerating
exploratory statistical analysis,” in SIGMOD, 2017, pp. 557–572.

[16] X. Xie, K. Zou, X. Hao, T. B. Pedersen, P. Jin, and W. Yang, “OLAP
over probabilistic data cubes II: parallel materialization and extended
aggregates,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 10, pp. 1966–
1981, 2020.

[17] R. Gao, X. Xie, K. Zou, and T. B. Pedersen, “Multi-dimensional
probabilistic regression over imprecise data streams,” in WWW, 2022,
pp. 3317–3326.

[18] X. Xie, X. Hao, T. B. Pedersen, P. Jin, and J. Chen, “OLAP over
probabilistic data cubes I: aggregating, materializing, and querying,” in
ICDE, 2016, pp. 799–810.

[19] S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-driven explo-
ration of olap data cubes,” in EDBT, 1998, pp. 168–182.

[20] A. Key, B. Howe, D. Perry, and C. R. Aragon, “Vizdeck: self-organizing
dashboards for visual analytics,” in SIGMOD, 2012, pp. 681–684.

[21] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina, “Seedb: Visual-
izing database queries efficiently,” Proc. VLDB Endow., 2013.

[22] A. Cheung, A. Solar-Lezama, and S. Madden, “Using program synthesis
for social recommendations,” in CIKM, 2012, pp. 1732–1736.

[23] A. Abouzied, J. M. Hellerstein, and A. Silberschatz, “Playful query
specification with dataplay,” Proc. VLDB Endow., vol. 5, no. 12, pp.
1938–1941, 2012.

[24] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang, “Extracting top-k
insights from multi-dimensional data,” in Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017. ACM, 2017, pp. 1509–
1524.

[25] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang, “Quickinsights: Quick
and automatic discovery of insights from multi-dimensional data,” in
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019. ACM, 2019, pp. 317–332.

[26] P. Ma, R. Ding, S. Han, and D. Zhang, “Metainsight: Automatic
discovery of structured knowledge for exploratory data analysis,” in

SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021. ACM, 2021, pp. 1262–1274.

[27] O. B. El, T. Milo, and A. Somech, “Automatically generating data
exploration sessions using deep reinforcement learning,” in Proceedings
of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020. ACM, 2020, pp. 1527–1537.

[28] A. Personnaz, S. Amer-Yahia, L. Berti-Équille, M. Fabricius, and S. Sub-
ramanian, “DORA THE EXPLORER: exploring very large data with
interactive deep reinforcement learning,” in CIKM ’21: The 30th ACM
International Conference on Information and Knowledge Management,
Virtual Event, Queensland, Australia, November 1 - 5, 2021. ACM,
2021, pp. 4769–4773.

[29] D. Deutch, A. Gilad, T. Milo, and A. Somech, “Explained: Explanations
for EDA notebooks,” Proc. VLDB Endow., vol. 13, no. 12, pp. 2917–
2920, 2020.

[30] Y. Diao, P. Guzewicz, I. Manolescu, and M. Mazuran, “Efficient ex-
ploration of interesting aggregates in RDF graphs,” in SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. ACM, 2021, pp. 392–404.

[31] X. Zhu, X. Huang, J. Huang, B. Choi, and J. Xu, “Hdag-explorer:
A system for hierarchical DAG summarization and exploration,” Proc.
VLDB Endow., vol. 13, no. 12, pp. 2973–2976, 2020.

[32] B. Li, R. Cheng, J. Hu, Y. Fang, M. Ou, R. Luo, K. C. Chang, and
X. Lin, “Mc-explorer: Analyzing and visualizing motif-cliques on large
networks,” in 36th IEEE International Conference on Data Engineering,
ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp.
1722–1725.

[33] Y. Luo, W. Li, T. Zhao, X. Yu, L. Zhang, G. Li, and N. Tang, “Deeptrack:
Monitoring and exploring spatio-temporal data - A case of tracking
COVID-19 -,” Proc. VLDB Endow., vol. 13, no. 12, pp. 2841–2844,
2020.

[34] J. Yu, K. Chowdhury, and M. Sarwat, “Tabula in action: A sampling
middleware for interactive geospatial visualization dashboards,” Proc.
VLDB Endow., vol. 13, no. 12, pp. 2925–2928, 2020.

[35] T. Guo, K. Feng, G. Cong, and Z. Bao, “Efficient selection of geospatial
data on maps for interactive and visualized exploration,” in Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018. ACM, 2018,
pp. 567–582.

[36] R. Neamtu, R. Ahsan, E. A. Rundensteiner, and G. N. Sárközy, “In-
teractive time series exploration powered by the marriage of similarity
distances,” Proc. VLDB Endow., vol. 10, no. 3, pp. 169–180, 2016.

[37] P. Eichmann, F. Solleza, N. Tatbul, and S. Zdonik, “Visual exploration
of time series anomalies with metro-viz,” in Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 2019,
pp. 1901–1904.

[38] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. G. Parameswaran,
“Effortless data exploration with zenvisage: An expressive and interac-
tive visual analytics system,” Proc. VLDB Endow., vol. 10, no. 4, pp.
457–468, 2016.

[39] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li, “Steerable self-
driving data visualization,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1,
pp. 475–490, 2022.

[40] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” Proc. VLDB Endow.,
vol. 7, no. 5, pp. 365–376, 2014.

[41] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, pp. 63:1–63:34, 2020.

[42] L. Palma, Y. Diao, and A. Liu, “Efficient version space algorithms for”
human-in-the-loop” model development,” Ecole Polytechnique, Tech.
Rep., 2020.

[43] P. Ren, Y. Xiao, X. Chang, P. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang, “A survey of deep active learning,” ACM Comput. Surv.,
vol. 54, no. 9, pp. 180:1–180:40, 2022.

[44] E. Wu, L. Battle, and S. R. Madden, “The case for data visualization
management systems: Vision paper,” Proc. VLDB Endow., 2014.

[45] A. Kim, E. Blais, A. G. Parameswaran, P. Indyk, S. Madden, and R. Ru-
binfeld, “Rapid sampling for visualizations with ordering guarantees,”
Proc. VLDB Endow., vol. 8, no. 5, pp. 521–532, 2015.

[46] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M. Hellerstein, and
A. Silberschatz, “Learning and verifying quantified boolean queries by
example,” in PODS, 2013, pp. 49–60.

[47] Q. T. Tran, C. Chan, and S. Parthasarathy, “Query by output,” in
SIGMOD, 2009, pp. 535–548.

[48] W. Loh, “Classification and regression trees,” WIREs Data Mining
Knowl. Discov., vol. 1, no. 1, pp. 14–23, 2011.

[49] H. Liu, W. Liu, and L. J. Latecki, “Convex shape decomposition,” in
CVPR, 2010, pp. 97–104.

[50] J. Lien and N. M. Amato, “Approximate convex decomposition of
polygons,” in SCG, 2004, pp. 17–26.

[51] A. Bouchachia, “Dynamic clustering,” Evolving Systems, vol. 3, no. 3,
pp. 133–134, 2012.

[52] A. L. Mary and K. S. Kumar, “A density based dynamic data clustering
algorithm based on incremental dataset,” Citeseer, 2012.

[53] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “Melu: Meta-learned user
preference estimator for cold-start recommendation,” in KDD, 2019, pp.
1073–1082.

[54] M. Dong, F. Yuan, L. Yao, X. Xu, and L. Zhu, “MAMO: memory-
augmented meta-optimization for cold-start recommendation,” in KDD,
2020, pp. 688–697.

[55] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
CoRR, vol. abs/1410.5401, 2014.

[56] J. Fan, T. Liu, G. Li, J. Chen, Y. Shen, and X. Du, “Relational
data synthesis using generative adversarial networks: A design space
exploration,” Proc. VLDB Endow., vol. 13, no. 11, pp. 1962–1975, 2020.

[57] D. A. Reynolds, “Gaussian mixture models,” Encyclopedia of biomet-
rics, vol. 741, pp. 659–663, 2009.

[58] G. F. Jenks and F. C. Caspall, “Error on choroplethic maps: definition,
measurement, reduction,” Annals of the Association of American Geog-
raphers, vol. 61, no. 2, pp. 217–244, 1971.

[59] G. F. Jenks, “Optimal data classification for choropleth maps,” Depart-
ment of Geographiy, University of Kansas Occasional Paper, 1977.

[60] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional GAN,” in NeurIPS, 2019, pp.
7333–7343.

[61] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng, “Maximum error-
bounded piecewise linear representation for online stream approxima-
tion,” VLDB J., vol. 23, no. 6, pp. 915–937, 2014.

[62] X. Qin, C. Chai, Y. Luo, N. Tang, and G. Li, “Interactively discovering
and ranking desired tuples without writing SQL queries,” in SIGMOD,
2020, pp. 2745–2748.

[63] W. Liu, Y. Diao, and A. Liu, “An analysis of query-agnostic sampling
for interactive data exploration,” Communications in Statistics-Theory
and Methods, vol. 47, no. 16, pp. 3820–3837, 2018.

